* HAESE MATHEMATICS Mathematics Analysis and Approaches SL though the control of the control

ERRATA

Mathematics: Analysis and Approaches SL

First edition - 2024 fourth reprint

The following erratum was made on 28/Oct/2024

page 541 **ANSWERS EXERCISE 3D.2**, question **2 b** should read:

ERRATA

Mathematics: Analysis and Approaches SL

First edition - 2022 third reprint

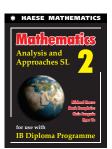
The following erratum was made on 27/Aug/2024

page 287 **CHAPTER 12 INVESTIGATION 1**, question **1** should read:

1 Use the binomial expansion $(x+h)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} h^r$ $= \binom{n}{0} x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n} h^n$

and the first principles formula $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find the derivative of $f(x) = x^n$ for $n \in \mathbb{N}$.

The following errata were made on 14/Oct/2022


page 562 **ANSWERS EXERCISE 7C**, question **7** should read:

6 B and D 7 A and C, B and E

page 563 **ANSWERS REVIEW SET 7B**, question **5** should read:

5 $\approx 103^{\circ}$ or 257° 6 radius ≈ 8.79 cm, area ≈ 81.0 cm²

ERRATA

Mathematics: Analysis and Approaches SL

First edition - 2020 first reprint

The following erratum was made on 27/Jul/2020

page 606 **ANSWERS EXERCISE 21A.1**, question **2 c** should read:

- 2 The times may be affected by:
 - · weather conditions
 - · walking speed
 - · physical fitness
 - traffic.

The following erratum was made on 17/Jun/2020

page 139 CHAPTER 5 INVESTIGATION 2, question 5 should read:

5 For continuous growth, $u_n = u_0 e^{rt}$ where u_0 is the initial amount, r is the annual percentage rate, and t is the number of years.

Use this formula to find the final amount if \$1000 is invested for 1 year at a fixed rate of 6% per annum, where the interest is paid continuously.

The following errata were made on 27/May/2020

page 601 ANSWERS EXERCISE 19D, question 3 b should read:

- 3 a $r \approx -0.924$
 - **b** There is a strong, negative correlation between the *petrol price* and the *number of customers*.

page 608 ANSWERS REVIEW SET 21B.2, question 10 b should read:

10 a $\approx 84.1\%$ **b** ≈ 0.880

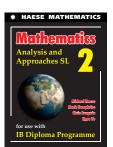
The following erratum was made on 13/May/2020

page 586 ANSWERS REVIEW SET 13B, question 20 b should read:

20 a
$$0 \leqslant x \leqslant \frac{\pi}{2}$$
 and $\frac{3\pi}{2} \leqslant x \leqslant 2\pi$

b
$$f'(x) = -\frac{\sin x}{2\sqrt{\cos x}}$$
, increasing for $\frac{3\pi}{2} \leqslant x \leqslant 2\pi$, decreasing for $0 \leqslant x \leqslant \frac{\pi}{2}$

The following errata were made on 11/May/2020


page 585 **ANSWERS REVIEW SET 13A**, question **19 c** should read:

```
19 a concave up for x\geqslant\frac{4}{3}, concave down for x\leqslant\frac{4}{3} b concave up for x\leqslant-3, concave down for -3\leqslant x<0 and x>0 concave up for -4< x\leqslant -2 and x>0, concave down for x<-4 and -2\leqslant x<0
```

page 588 **ANSWERS EXERCISE 15B**, question **1 b** should read:

Ь	n	A_L	A_U
	5	0.5497	0.7497
	10	0.6105	0.7105
	50	0.6561	0.6761
	100	0.6615	0.6715
	500	0.6656	0.6676

ERRATA

Mathematics: Analysis and Approaches SL

First edition - 2019 initial print

The following erratum was made on 30/Mar/2020

page 207 SECTION 8C, blue box should read:

For the general sine function

 $y = a \sin(b(x-c)) + d$ where b > 0:

affects affects affects affects

amplitude period horizontal translation vertical translation

- the amplitude is |a|
- the period is $\frac{2\pi}{b}$
- the principal axis is y = d
- $y = a\sin(b(x-c)) + d$ is obtained from $y = \sin x$ by a vertical stretch with scale factor |a| and a horizontal stretch with scale factor $\frac{1}{b}$, a reflection in the x-axis if a < 0, and a translation through $\begin{pmatrix} c \\ d \end{pmatrix}$.

The following errata were made on 13/Mar/2020

page 42 **SECTION 2C Example 10**, solution to part **b** should read:

a The graph cuts the
$$x$$
-axis twice if $\Delta > 0$.

$$\therefore 36 - 4k > 0$$

$$\therefore 4k < 36$$

$$\therefore k < 9$$

b The graph touches the
$$x$$
-axis if $\Delta = 0$.
 $\therefore 36 - 4k = 0$

$$6-4k = 0$$
 $\therefore 36-4k < 0$
 $\therefore k = 9$ $\therefore 4k > 36$
 $\therefore k > 9$

page 150 **EXERCISE 6B**, question **6** should read:

6 Suppose $\log_a b = x$, $b \neq 1$, b > 0. Find, in terms of x, the value of $\log_b a$.

page 209 EXERCISE 8C, question 14 should read:

- 14 Consider the general sine function $y = a \sin(b(x-c)) + d$, with default values a, b = 1, c, d = 0. State which of the variables a, b, c, and d can be changed to produce a change in:
 - **a** the x-intercepts of the function
- **b** the y-intercept of the function

• The graph does not cut

the x-axis if $\Delta < 0$.

c the range of the function.

page 296 EXERCISE 12C, question 7 should read:

7 Find the value of x for which the tangent to $f(x) = ax\sqrt{1-x}$, $a \neq 0$ has gradient:

4 Find all points on the curve $y = 4x^3 + 6x^2 - 13x + 1$ where the gradient of the tangent is 11.

page 415 CHAPTER 17 ACTIVITY 1, question 2 a change to match example diagram:

- **2** Consider the total area enclosed between $y = -x^3 + x^2 + 6x$ and y = 2x + 4 on the interval $-2 \le x \le 2$.
 - a Explain why the total area is equal to

$$\int_{-2}^{2} \left| (-x^3 + x^2 + 6x) - (2x + 4) \right| dx = \int_{-2}^{2} \left| -x^3 + x^2 + 4x - 4 \right| dx$$

page 495 CHAPTER 20 INVESTIGATION 1, question 1 change for simplicity:

What to do:

- 1 Click on the icon to access the demonstration. It shows the graph of the binomial distribution for $X \sim B(n, p)$. Set n = 25 and p = 0.1.
 - **a** What is the mode of X?
 - **b** Describe the shape of the distribution.

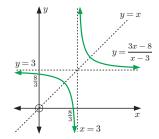
page 503 REVIEW SET 20B, remove question 9 c ii:

page 535 ANSWERS EXERCISE 2C, questions 6 b i, and c i should read:

6 a i
$$k < \frac{9}{4}$$
 ii $k = \frac{9}{4}$ iii $k > \frac{9}{4}$ b i $k < 4$, $k \ne 0$ ii $k = 4$ iii $k > 4$ c i $k > -\frac{4}{3}$, $k \ne -1$ ii $k = -\frac{4}{3}$ iii $k < -\frac{4}{3}$

page 538 ANSWERS EXERCISE 3A, question 6 a should read:

6 a $y^2=x$ is a relation but not a function. $y=x^2$ is a function (and a relation). $y^2=x$ has a horizontal axis of symmetry (the x-axis). $y=x^2$ has a vertical axis of symmetry (the y-axis). Both $y^2=x$ and $y=x^2$ pass through (0,0) and (1,1). $y^2=x$ is a rotation of $y=x^2$ clockwise through 90° about the origin $\ or \ y^2=x$ is a reflection of $\ y=x^2$ in the line $\ y=x$.


page 542 ANSWERS EXERCISE 3D.2, question 5 should read:

5 a Domain is
$$\{x \mid x \neq -\frac{d}{c}\}$$

b vertical asymptote is $x = -\frac{d}{c}$
c x -intercept is $-\frac{b}{a}$, $a \neq 0$, y -intercept is $\frac{b}{d}$, $d \neq 0$
d $\frac{ax+b}{cx+d} = \frac{\frac{a}{c}(cx+d) - \frac{ad}{c} + b}{cx+d}$ and so on

As $|x| \to \infty$, $\frac{b-\frac{ad}{c}}{cx+d} \to 0$.

 \therefore the horizontal asymptote is $y = \frac{a}{c}$.

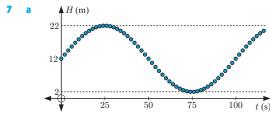
15

$$y = \frac{3x - 8}{x - 3}$$
 is symmetrical about $y = x$

$$f^{-1}(x) = \frac{3x - 8}{x - 3} = f(x)$$

b
$$f^{-1}(x) = \frac{3x-8}{x-3}$$

page 550 ANSWERS EXERCISE 3C, question 9 should read:


- **9 a** The graph is stretched vertically with scale factor |a|, and reflected in the x-axis. It is then translated h units horizontally and k units vertically.
 - **b** The function has shape after it is reflected in the x-axis.

The function has vertex (h, k), and y-intercept $ah^2 + k$.

page 566 ANSWERS EXERCISE 8C, question 14 should read:

14 a b, c, d **b** c, d **c** a, d

page 566 ANSWERS EXERCISE 8D.1, question 7 graphs should be discrete:

25 50 50 100 t(s)

page 567 **ANSWERS EXERCISE 8E**, question $4 \, \mathsf{c}$ should not have y intercept label of -1:

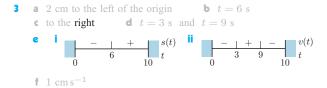
4 c y $x = \frac{11\pi}{18}$ $x = \frac{29\pi}{18}$ $y = 3 \tan(x - \frac{\pi}{9})$ $x = -\frac{25\pi}{18}$ $x = -\frac{25\pi}{18}$

page 569 **ANSWERS REVIEW SET 8A**, question **14 c** should read:

14 • Using technology, $T\approx 36.5\sin(0.009\,01n-0.0903)-43.2\,.$ Our model fits the data well.

14 **c** Using technology, $T \approx 7.20\sin(0.488t + 1.08) + 24.7$. The model fits reasonably well but not perfectly.

page 571 ANSWERS EXERCISE 9C.2, questions 2 c and 3 a should read:


- **2 a** $1 + 2\sin\theta + \sin^2\theta$ **b** $\sin^2\alpha 4\sin\alpha + 4$ **c** $\tan^2\alpha 2\tan\alpha + 1$ **d** $1 + 2\sin\alpha\cos\alpha$ **e** $1 2\sin\beta\cos\beta$ **f** $-4 + 4\cos\alpha \cos^2\alpha$ **3 a** $-\sin^2x\tan^2x$ **b** 13
- page 572 ANSWERS EXERCISE 10C, questions 6 a and 7 a should read:
 - 6 **a** $(a-b)(a+b) = b(a-b) \implies a+b=b$ $2a = a \implies 2 = 1$ **b** $\frac{4x-40}{6-x} = \frac{4x-40}{13-x} \implies 6-x = 13-x$ 7 **a** $6x-12=3(x-2) \implies 6x-12+3(x-2)=0$ **b** $x(x-6)=3(-3) \implies x=3 \lor x-6=-3$

page 572 ANSWERS REVIEW SET 10B, question 4 b should read:

4 a not equivalent b not equivalent

page 588 ANSWERS EXERCISE 15B, question 1 b should read:

page 596 ANSWERS EXERCISE 18B.1, question 3 e sign diagrams should terminate at t = 10:

page 596 ANSWERS EXERCISE 18C, question 3 c should read:

3 c At t = 5 s, the stone is 367.5 m above the ground and moving upward at 49 m s⁻¹. It has acceleration -9.8 m s⁻². At t = 12 s, the stone is 470.4 m above the ground and moving downward at 19.6 m s⁻¹. It has acceleration -9.8 m s⁻².

page 598 **ANSWERS REVIEW SET 18A**, question 1 e motion diagram should have correctly placed point for t = 6:

a 12 m to the right of the origin
b i 10 m to the right of the origin
c t = 6 s
ii 6 m to the right of the origin
d No, the displacement function is linear, so it has no turning points.
c t = 10 t = 6 t = 3 t = 1
t = 0

page 606 ANSWERS REVIEW SET 20B, question 9 c ii was removed.

The following errata were made on 26/Jul/2019

page 296 EXERCISE 12C, question 7 should read:

7 Find the value of x for which the tangent to $f(x) = ax\sqrt{1-x}$, $a \neq 0$ has gradient:

page 371 **EXERCISE 15B**, question **2 a** should read:

- **2** Consider the region enclosed by $y = \sqrt{1+x^3}$ and the x-axis for $0 \le x \le 2$.
 - a Write expressions for the lower and upper rectangle sums using n subintervals where $n \in \mathbb{Z}^+$.

page 374 **EXERCISE 15C**, question **2 b** should read:

b Predict a general rule for the antiderivative of e^{kx} where $k \neq 0$ is a constant.

page 385 CHAPTER 15 SECTION B, text above blue box should read:

For
$$x < 0$$
, $\frac{d}{dx}(\ln(-x) + c) = \frac{-1}{-x} = \frac{1}{x}$

$$\therefore \int \frac{1}{x} dx = \begin{cases} \ln x + c & \text{if } x > 0 \\ \ln(-x) + c & \text{if } x < 0 \end{cases}$$

 $\therefore \int \frac{1}{x} dx = \ln|x| + c, \ x \neq 0$

|x| is the absolute value of x, which was studied in **Chapter 3**.

page 390 CHAPTER 16 SECTION D, blue box should read:

$$\therefore \int (ax+b)^n \ dx = \frac{1}{a} \frac{(ax+b)^{n+1}}{(n+1)} + c \text{ for } n \neq -1, \ a \neq 0.$$

page 417 **EXERCISE 17E**, question 4, function E(t) should read:

4 The rate of power consumption of the United Kingdom can be modelled by the function

$$E(t) = 13\sin\left(\frac{(t+3)\pi}{3}\right) + 70\cos\left(\frac{(t-1)\pi}{6}\right) + 196$$
 TWh per month

page 424 REVIEW SET 17B, question 19 should read:

19 Over the course of a day, the <u>rate</u> of solar energy being transferred into Callum's solar panels is given by

$$E(t) = 2\sin\left(\frac{t-5}{5}\right) + \frac{1}{2}\sin\left(\frac{t-5}{4}\right) \text{ kW}$$

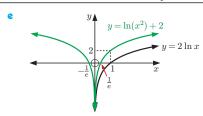
page 428 CHAPTER 18 EXAMPLE 1, solution to part d should read:

d The stone is above ground level whenever s(t) > 0. This occurs for $0 \le t < 5$ s.

page 447 **REVIEW SET 18B**, question **8**, function v(t) should read:

8 A skier is travelling down a hill. Her velocity after t seconds is given by

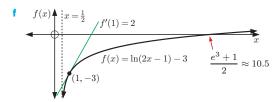
$$v(t) = \frac{\left(t^{1.1} + 3t\right)^{1.5}}{10} \ \mathrm{m\,s^{-1}}.$$


page 461 CHAPTER 19 SECTION C, second paragraph of INTERPOLATION AND EXTRAPOLATION should read:

The line of best fit for the data is also drawn on the scatter diagram. We can use this line to predict the value of one variable for a given value of the other. For example, consider the line of best fit for the data in the **Opening Problem**. It can be used to predict the distance a discus will be thrown by an athlete of a particular age.

page 501 REVIEW SET 20A, question 8 should read:

8 Suppose X is the number of marsupials entering a park at night. It is suspected that X has a probability mass function $P(x) = a(x^2 - 8x)$ where x = 0, 1, 2, 3, ..., 8.


page 559 **ANSWERS EXERCISE 6H**, question **5** \circ diagram should include x < 0:

page 574 ANSWERS REVIEW SET 11A, question 9 c i and ii should be positive:

- 9 a i 447.2 m ii 432.8 m b f'(t) = -9.6t
 - i 9.6 m s^{-1} ii 19.2 m s^{-1}

page 581 ANSWERS EXERCISE 13E, question 5 f diagram should include tangent at (1, -3):

page 586 ANSWERS REVIEW SET 13B, question 20 b should read:

- **20 a** $0 \leqslant x \leqslant \frac{\pi}{2}$ and $\frac{3\pi}{2} \leqslant x \leqslant 2\pi$
 - $\mathbf{b} \ \ f'(x) = -\frac{\sin x}{2\sqrt{\cos x}}, \quad \text{increasing for} \ \ \frac{3\pi}{2} < x \leqslant 2\pi,$ $\text{decreasing for} \ \ 0 \leqslant x < \frac{\pi}{2}$

page 589 ANSWERS EXERCISE 15C, question 2 b should read:

2 b The antiderivative of e^{kx} is $\frac{1}{k}e^{kx}$, where $k \neq 0$ is a

page 593 ANSWERS EXERCISE 17C, question 5 should read:

5
$$k = \frac{3}{2}$$
 or 6

page 594 **ANSWERS EXERCISE 17E**, question **3 b** should be in units instead of units²:

3 a C₁ is $y = 3\sin\frac{\pi t}{10}$, C₂ is $y = \sin\frac{\pi t}{10}$ **b** $\frac{40}{\pi}$ units

page 599 **ANSWERS REVIEW SET 18B**, question $\bf 8\ b$ and $\bf d$ should read:

- 8 a $\approx 6.76 \; \mathrm{m \, s^{-1}}$
 - **b** $a(t) = 0.15(t^{1.1} + 3t)^{0.5}(1.1t^{0.1} + 3) \text{ m s}^{-2}$
 - $\epsilon \approx 1.79~\mathrm{m\,s^{-2}}$ d $\approx 109~\mathrm{m}$