

ERRATA

MATHEMATICS FOR AUSTRALIA 11

Mathematical Methods

Worked Solutions

First edition - 2017

The following erratum was made on 05/May/2020

page 509 EXERCISE 15F Question 7 b, sign diagram should be:

7 b Area of rectangle $A = 2x \times l$

$$=2x\times(200-\pi x)$$

$$\therefore A = 400x - 2\pi x^2$$

$$\frac{dA}{dx} = 400 - 4\pi x$$

$$\frac{dA}{dx} = 0 \quad \text{when} \quad 400 - 4\pi x = 0$$

$$\therefore 4\pi x = 400$$

$$\therefore x = \frac{100}{\pi}$$

 $\frac{dA}{dx}$ has sign diagram

The following errata were made on 28/Apr/2020

page 134 **EXERCISE 4E** Question **3 c**, should read:

3 • The graph touches the x-axis at -4, indicating a squared factor $(x+4)^2$.

The other x-intercept is 3,

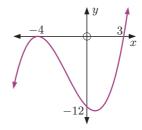
so
$$y = a(x+4)^2(x-3)$$
.

But when
$$x = 0$$
, $y = -12$

$$\therefore a(4)^2(-3) = -12$$

$$\therefore a = \frac{1}{4}$$

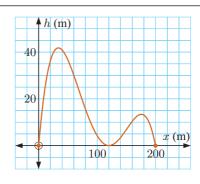
So,
$$y = \frac{1}{4}(x+4)^2(x-3)$$



a The graph touches the x-axis at 120, and cuts the x-axis at 0 and 200.

$$h(x) = \frac{-x(x-120)^2(x-200)}{k}, \quad k \neq 0$$

So, a = 120 and b = 200.



b When x = 100, h(x) = 4

$$\therefore 4 = \frac{(-100)(100 - 120)^2(100 - 200)}{k}$$

4k = 4000000

 $\therefore k = 1000000$

page 240 EXERCISE 7G Question 4 a, should read:

 $\cos 2\theta \cos \theta + \sin 2\theta \sin \theta$ $=\cos(2\theta-\theta)$

 $=\cos\theta$

b $\sin 2A \cos A + \cos 2A \sin A$ $=\sin(2A+A)$

 $= \sin 3A$

page 488 EXERCISE 15C Question 3 e, sign diagram should be:

 $f(x) = \frac{2}{\sqrt{x}} = 2x^{-\frac{1}{2}}$

$$f'(x) = -x^{-\frac{3}{2}} = -\frac{1}{x\sqrt{x}}$$

which has sign diagram

So, f(x) is only defined for x > 0. f(x) is never increasing, but is decreasing for x > 0.

page 492 EXERCISE 15D Question 5 d, sign diagram should be:

 $f(x) = x^3 - 3x + 2$ 5

$$f'(x) = 3x^2 - 3$$

$$= 3(x^2 - 1)$$

$$= 3(x + 1)(x - 1)$$

Now f(-1) = 4, f(1) = 0, so there is a local maximum at (-1, 4), and a

$$f(x) = x^{4} - 2x^{2}$$

$$\therefore f'(x) = 4x^{3} - 4x$$

$$= 4x(x^{2} - 1)$$

$$= 4x(x + 1)(x - 1)$$

sign diagram

Now f(-1) = -1, f(1) = -1, f(0) = 0, so there are local minima at (-1, -1) and (1, -1), and a local maximum at (0, 0).

 $f(x) = x^3 - 6x^2 + 12x + 1$

$$f'(x) = 3x^2 - 12x + 12$$

$$= 3(x^2 - 4x + 4)$$

$$= 3(x - 2)^2$$
which has

Now f(2) = 9, so there is a stationary inflection at (2, 9).

 $f(x) = \sqrt{x} + 2$

$$=x^{\frac{1}{2}}+2$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \neq 0$$

sign diagram

: there are no stationary points.

page 497 EXERCISE 15D Question 10 d, sign diagram should be:

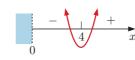
10 d Let
$$f(x) = x - 4\sqrt{x} = x - 4x^{\frac{1}{2}}$$
, for $0 \le x \le 5$

$$\therefore f'(x) = 1 - 2x^{-\frac{1}{2}}$$

$$= 1 - \frac{2}{\sqrt{x}}$$

$$= \frac{\sqrt{x} - 2}{\sqrt{x}}$$

which is 0 when x = 4The sign diagram of f'(x) is:



 \therefore there is a local minimum at x = 4.

page 505 **EXERCISE 15F** Question **2 b**, sign diagram should be:

2 b
$$\frac{dL}{dx} = 2 - 100x^{-2} = 2 - \frac{100}{x^2}$$

which is 0 when
$$\frac{100}{x^2} = 2$$

$$\therefore x^2 = 50$$

$$\therefore x = \sqrt{50} \quad \{x > 0\}$$

So, the length is a minimum when $x = \sqrt{50}$.

page 507 EXERCISE 15F Question 4 c, sign diagram should be:

4 c
$$A'(x) = 8x - 600x^{-2}$$

$$=8x-\frac{600}{x^2}$$

$$A'(x) = 0$$
 when $8x - \frac{600}{x^2} = 0$

$$\therefore 8x = \frac{600}{x^2}$$

$$x \cdot 8x^3 = 600$$

$$\therefore x^3 = 75$$

$$\therefore x = \sqrt[3]{75} \approx 4.22$$

A'(x) has sign diagram

5 c
$$\frac{dA}{dr} = 4\pi r - 2000r^{-2}$$

= $4\pi r - \frac{2000}{r^2}$

$$\frac{dA}{dr} = 0 \quad \text{when} \quad 4\pi r - \frac{2000}{r^2} = 0$$

$$\therefore 4\pi r = \frac{2000}{r^2}$$

$$\therefore 4\pi r^3 = 2000$$

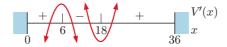
$$\therefore r^3 = \frac{500}{\pi}$$

$$\therefore r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42$$

 $\frac{dA}{dr}$ has sign diagram

page 509 EXERCISE 15F Question 6 b, sign diagram should be:

V'(x) has sign diagram



page 520 EXERCISE 15F Question 12 c, sign diagram should be:

12 c
$$C(x) = 2x^2 + \frac{8}{x} = 2x^2 + 8x^{-1}$$

$$C'(x) = 4x - 8x^{-2} = 4x - \frac{8}{x^2}$$

$$C'(x) = 0$$
 when $4x - \frac{8}{x^2} = 0$

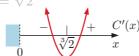
$$\therefore 4x = \frac{8}{r^2}$$

$$\therefore 4x^3 = 8$$
$$\therefore x^3 = 2$$

$$\therefore x^3 = 2$$

$$\therefore x = \sqrt[3]{2}$$

 $C^{\prime}(x)$ has sign diagram



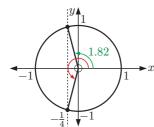
The following errata were made on 31/Oct/2019

pages 166-168 EXERCISE 5D.2 Question 2, diagrams should distinguish calculator answers (using green):

2 a
$$\cos \theta = -\frac{1}{4}$$

Using technology,

$$\cos^{-1}(-\frac{1}{4}) \approx 1.82$$



$$\theta \approx 1.82$$
 or $2\pi - 1.82$

$$\theta \approx 1.82$$
 or 4.46

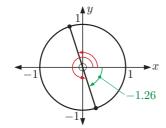
$$\sin \theta = 0$$

$$\therefore \sin^{-1}(0) = 0$$

$$\therefore \theta = 0 \text{ or } \pi - 0 \text{ or } 2\pi$$

$$\theta = 0, \pi, \text{ or } 2\pi$$

 $\tan \theta = -3.1$ Using technology, $\tan^{-1}(-3.1) \approx -1.26$

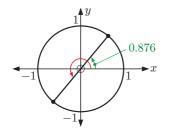


But $0 \leqslant \theta \leqslant 2\pi$

$$\theta \approx \pi - 1.26$$
 or $2\pi - 1.26$

$$\theta \approx 1.88$$
 or 5.02

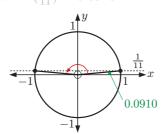
• $\tan \theta = 1.2$ Using technology, $\tan^{-1}(1.2) \approx 0.876$



$$\theta \approx 0.876$$
 or $\pi + 0.876$

$$\therefore$$
 $\theta \approx 0.876$ or 4.02

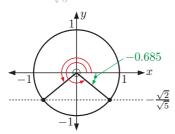
g $\sin \theta = \frac{1}{11}$ Using technology, $\sin^{-1}(\frac{1}{11}) \approx 0.0910$



$$\theta \approx 0.0910$$
 or $\pi - 0.0910$

$$\therefore \ \theta \approx 0.0910 \ \text{or} \ 3.05$$

i $\sin \theta = -\frac{\sqrt{2}}{\sqrt{5}}$ Using technology, $\sin^{-1}(-\frac{\sqrt{2}}{\sqrt{5}}) \approx -0.685$

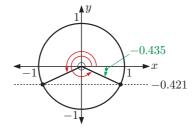


But $0 \leqslant \theta \leqslant 2\pi$

$$\therefore \theta \approx \pi + 0.685 \text{ or } 2\pi - 0.685$$

$$\theta \approx 3.83$$
 or 5.60

d $\sin \theta = -0.421$ Using technology, $\sin^{-1}(-0.421) \approx -0.435$

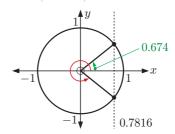


But $0 \leqslant \theta \leqslant 2\pi$

$$\theta \approx \pi + 0.435$$
 or $2\pi - 0.435$

$$\theta \approx 3.58$$
 or 5.85

f $\cos \theta = 0.7816$ Using technology, $\cos^{-1}(0.7816) \approx 0.674$

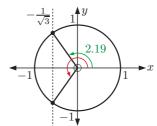


$$\theta \approx 0.674$$
 or $2\pi - 0.674$

$$\theta \approx 0.674$$
 or 5.61

h $\cos \theta = -\frac{1}{\sqrt{3}}$ Using technology,

 $\cos^{-1}(-\frac{1}{\sqrt{3}}) \approx 2.19$



$$\theta \approx 2.19$$
 or $2\pi - 2.19$

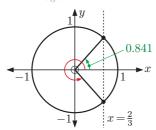
$$\theta \approx 2.19$$
 or 4.10

16

 $\cos\theta = \frac{2}{2}$

Using technology,

 $\cos^{-1}(\frac{2}{2}) \approx 0.841$



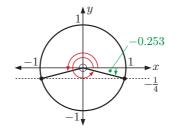
 $\theta \approx 0.841$ or $2\pi - 0.841$

 $\theta \approx 0.841$ or 5.44

 $\sin \theta = -\frac{1}{4}$

Using technology,

 $\sin^{-1}(-\frac{1}{4}) \approx -0.253$



But $0 \leqslant \theta \leqslant 2\pi$

$$\therefore \ \theta \approx \pi + 0.253 \ \text{or}$$

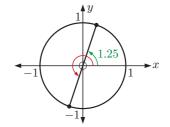
$$2\pi + (-0.253)$$

 $\theta \approx 3.39$ or 6.03

 $\tan \theta = 3$

Using technology,

$$\tan^{-1}(3) \approx 1.25$$



 $\theta \approx 1.25$ or

$$\pi + 1.25$$

 $\theta \approx 1.25$ or 4.39

The following errata were made on 23/Oct/2019

page 68 **EXERCISE 2H** Question **8 b**, should show shape of quadratic:

Rectangle ABCD has area A = xy

$$= x(6 - \frac{3}{4}x)$$

$$=-\frac{3}{4}x^2+6x$$

which is a quadratic with a < 0, so its shape is

The area is maximised when $x = \frac{-b}{2a} = \frac{-6}{2(-\frac{3}{4})} = 4$

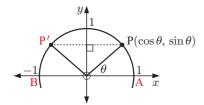
and when
$$x = 4$$
, $y = 6 - \frac{3}{4}(4) = 3$

So, the dimensions of rectangle ABCD of maximum area are $4 \text{ cm} \times 3 \text{ cm}$.

page 160 **EXERCISE 5C** Question **7 c**, diagram should show labels:

7

C



The diagram shows P reflected in the y-axis to P', so $P'\widehat{O}B = P\widehat{O}A = \theta$, and P' has coordinates $(-\cos\theta, \sin\theta)$.

But
$$\widehat{AOP}' = 180^{\circ} - \theta$$

$$\{\widehat{AOP'} + \widehat{P'OB} = 180^{\circ}\}, \text{ so } P' \text{ has}$$

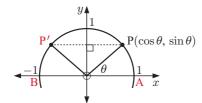
coordinates
$$(\cos(180^{\circ} - \theta), \sin(180^{\circ} - \theta)).$$

$$\sin(180^{\circ} - \theta) = \sin \theta$$

{equating y-coordinates of P'}

page 161 **EXERCISE 5C** Question **8 c**, diagram should show labels:

8



The diagram shows P reflected in the y-axis to P', so $P'\widehat{O}B = P\widehat{O}A = \theta$, and P' has coordinates $(-\cos\theta, \sin\theta)$.

But
$$\widehat{AOP'} = 180^{\circ} - \theta$$

$$\{\widehat{AOP'} + \widehat{P'OB} = 180^{\circ}\}, \text{ so } P' \text{ has}$$

coordinates
$$(\cos(180^{\circ} - \theta), \sin(180^{\circ} - \theta)).$$

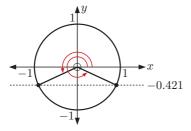
$$\therefore \cos(180^{\circ} - \theta) = -\cos\theta$$

{equating x-coordinates of P'}

d $\sin \theta = -0.421$

Using technology,

$$\sin^{-1}(-0.421) \approx -0.435$$



But $0 \leqslant \theta \leqslant 2\pi$

$$\theta \approx \pi + 0.435$$
 or $2\pi - 0.435$

$$\theta \approx 3.58$$
 or 5.85

The following errata were made on 02/Sep/2019

page 318 EXERCISE 10B Question 14 a, should read:

14 **a** Month 1: 5 cars Month 2: 5 + 13 = 18 cars

Month 3: 18 + 13 = 31 cars

Month 4: 31 + 13 = 44 cars

Month 5: 44 + 13 = 57 cars

Month 6: 57 + 13 = 70 cars

page 340 EXERCISE 10F.2 Question 7, should read:

7 Let the terms of the geometric series be t_1 , t_1r , t_1r^2 ,

Then $t_1 r = \frac{8}{5}$

and $\frac{t_1}{1-r} = 10$

 $t_1 = \frac{8}{5r}$ (1) $t_1 = 10 - 10r$ (2)

Equating (1) and (2), $\frac{8}{5r} = 10 - 10r$

$$\therefore 8 = 50r - 50r^2$$

$$\therefore 50r^2 - 50r + 8 = 0$$

$$\therefore \ 2(25r^2 - 25r + 4) = 0$$

$$\therefore 2(5r-1)(5r-4)=0$$

$$\therefore r = \frac{1}{5} \text{ or } \frac{4}{5}$$

Using (2), if $r = \frac{1}{5}$, $t_1 = 10 - 10(\frac{1}{5}) = 8$

if
$$r = \frac{4}{5}$$
, $t_1 = 10 - 10(\frac{4}{5}) = 2$

: either $t_1 = 8$, $r = \frac{1}{5}$ or $t_1 = 2$, $r = \frac{4}{5}$.