Mathematics for Australia Specialist Mathematics

ERRATA

MATHEMATICS FOR AUSTRALIA 11

Specialist Mathematics Worked Solutions

First edition - 2016

The following errata was made on 11/May/2020

page 247 **EXERCISE 6E**, question **2** should read:

- **2** P_n is: The product of n odd integers is odd for all $n \in \mathbb{Z}, n \ge 2$. **Proof:** (By the principle of mathematical induction)
 - (1) Let p_1 and p_2 be odd integers. Then there exist $\ q_1,\ q_2\in\mathbb{Z}$ such that $\ p_1=2q_1+1$ and $\ p_2=2q_2+1$. Now $\ p_1p_2=(2q_1+1)(2q_2+1)$ $=4q_1q_2+2q_1+2q_2+1$ $=2(2q_1q_2+q_1+q_2)+1$ which is odd.
 - \therefore P_2 is true.
 - (2) If P_k is true, then the product of k odd integers is odd. Let $p_1, p_2,, p_k$, and p_{k+1} be odd integers. Then there exist $q, r \in \mathbb{Z}$ such that $p_1p_2....p_k = 2q+1$ {using P_k } and $p_{k+1} = 2r+1$ Now $p_1p_2....p_kp_{k+1} = (2q+1)(2r+1)$ = 4qr+2q+2r+1 = 2(2qr+q+r)+1 which is odd.
 - \therefore P_{k+1} is also true.

Since P_2 is true, and P_{k+1} is true whenever P_k is true, P_n is true for all $n \in \mathbb{Z}, n \ge 2$. {principle of mathematical induction}

The following erratum was made on 28/Apr/2020

page 85 **EXERCISE 3L**, question **3 a ii** should read:

3 a i
$$\overrightarrow{PC} = \overrightarrow{AP} = \mathbf{r}$$
, $\overrightarrow{DP} = \overrightarrow{PB} = \mathbf{s}$
ii $\overrightarrow{AB} = \overrightarrow{AP} + \overrightarrow{PB}$, $\overrightarrow{DC} = \overrightarrow{DP} + \overrightarrow{PC}$
 $= \mathbf{r} + \mathbf{s}$ $= \mathbf{s} + \mathbf{r}$
 $= \mathbf{r} + \mathbf{s}$

The following errata were made on 21/Feb/2020

page 136 **EXERCISE 4I**, question **2 a** text alongside second diagram should read:

2

$$\cos x = 1 \quad \text{when}$$

$$x = 0 \text{ or } 2\pi$$

$$\{0 \leqslant x \leqslant 2\pi\}$$

$$x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}, \text{ or } 2\pi.$$

page 137 EXERCISE 4I, question 2 d text alongside diagrams should read:

d \therefore $\sin 2x = 0$ or $\cos 2x = \frac{1}{2}$

$$2x = 0 \text{ when}$$

$$2x = 0, \pi, 2\pi, 3\pi$$
or 4π

$$\{0 \leqslant 2x \leqslant 4\pi\}$$

 $\cos 2x = \frac{1}{2}$ when

$$2x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3},$$
or
$$\frac{11\pi}{3}$$

$$\{0 \leqslant 2x \leqslant 4\pi\}$$

$$\therefore 2x = 0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi, \frac{7\pi}{3}, 3\pi, \frac{11\pi}{3}, \text{ or } 4\pi \quad \{0 \leqslant 2x \leqslant 4\pi\}$$

page 287 EXERCISE 7G.2, question 3 b last line should read:

3 b
$$=\left(\frac{z_1}{z_2}\right)^*$$
 for $z_2 \neq 0$ {using **a**}

The following erratum was made on 12/Jul/2019

page 289 **EXERCISE 7G.2**, question **8 b** does not require a to not be equal to -1:

w is purely imaginary if $a^2 - b^2 - 1 = 0$ and $2ab \neq 0$ that is, if $a^2 - b^2 = 1$

and neither a nor b is zero.