Mathematics 12 Mathematics 12 Mathematical Methods Michael Rose Sonda Hose Sonda Hose

ERRATA

MATHEMATICS FOR AUSTRALIA 12

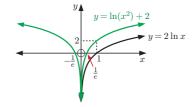
Mathematical Methods

First edition - 2019 second reprint

The following erratum was made on 25/May/2020

page 137 INVESTIGATION 2 Question 3 b, should read:

3 Use the midpoint rule to estimate:


$$\int_0^2 \sin(x^2) dx$$

b the area enclosed between $y = \sin(x^2)$, the x-axis, and the vertical lines x = 0 and x = 2.

The following erratum was made on 21/Feb/2020

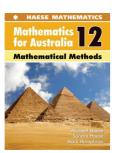
page 300 ANSWERS EXERCISE 1C Question $\bf 5$ $\bf e$, should read:

5 е

The following erratum was made on 23/Dec/2019

page 319 ANSWERS EXERCISE 5D Question 5 b, should read:

5 a
$$C_1$$
 is $y = 3\sin(\frac{\pi t}{10})$, C_2 is $y = \sin(\frac{\pi t}{10})$ **b** $\frac{40}{\pi}$ units


The following erratum was made on 22/Oct/2019

page 331 ANSWERS EXERCISE 9F.2 Question 2, should read:

1 ≈ 8070 people

2 865 trial runs

ERRATA

MATHEMATICS FOR AUSTRALIA 12

Mathematical Methods

First edition - 2017 first reprint

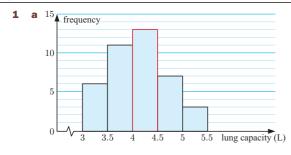
The following errata were made on 15/May/2019

page 84 EXERCISE 3F Question 1, should have domain:

1 The quantity of a chemical in human skin which is responsible for its 'elasticity' is given by $Q(t) = 100 - 10\sqrt{t}$ where t is the age of a person in years, $0 \le t \le 100$.

page 104 **EXERCISE 4A.2** Question **5 b**, should have integrals with respect to x:

5 b For a positive function f(x), $\int_2^5 f(x) \, dx = 10$, and $\int_5^9 f(x) \, dx = 12$. Find:


The following erratum was made on 22/Mar/2018

page 314 ANSWERS REVIEW SET 3B Question 15 b, should state that the answer is for part b:

14 $x \approx 2.11$ **15 b** $\frac{1}{\sqrt{2}}$ metres

The following erratum was made on 10/Jan/2018

page 329 ANSWERS REVIEW SET 8A Question 1 a, should have interval from 4 to 4.5 frequency = 13:

The following erratum was made on 05/Jan/2018

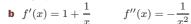
page 332 ANSWERS REVIEW SET 9A Questions 13 b and c, should read:

13 a $0.468 \leqslant p \leqslant 0.508$ **b** width ≈ 0.0392 **c** 2410 people

The following errata were made on 25/Jul/2017

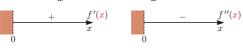
page 94 REVIEW SET 3A Question 15 b, should read:

15 b Show that if $\theta = \widehat{APM} = \widehat{BPM}$, then the length of cable is given by $L(\theta) = 3 + \frac{2 - \cos \theta}{\sin \theta} \text{ km.}$


page 312 ANSWERS EXERCISE 3F Question 6 e, should read:

6 e Hint: You should find $\frac{dW}{dt} = -\frac{1}{50} \ln 2 \times 20e^{-\frac{t}{50} \ln 2}$

9 c
$$\theta = \frac{\pi}{6}$$



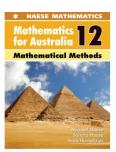
page 313 ANSWERS REVIEW SET 3A Question 6 b, should read:

$$f''(x) = -\frac{1}{x^2}$$

f(x) is increasing for all x > 0 and is concave downwards $\quad \text{for all} \ \ x>0.$

The following erratum was made on 3/Jul/2017

page 26 REVIEW SET 1B Question 11, should read:

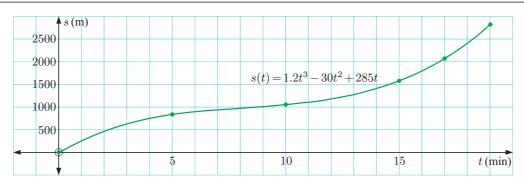

- 11 The temperature of a mug of water t minutes after it has been poured from a kettle is given by $T = 60e^{-0.1t} + 20$ °C.
 - Show that it will take $10 \ln 3$ minutes for the temperature of the water to fall to 40°C.

The following errata were made on 13/Jun/2017

page 78 Chapter 3 EXAMPLE 11 Solution, second to last line should read:

f'(x) has a local maximum when x=-4 and a local minimum when $x\approx 2\frac{1}{2}$.

ERRATA


MATHEMATICS FOR AUSTRALIA 12

Mathematical Methods

First edition - 2016 initial print

The following errata were made on 27/Feb/2017

page 60 Chapter 3 Opening problem Graph should be:

page 301 ANSWERS REVIEW SET 1A Question 2 c, should read:

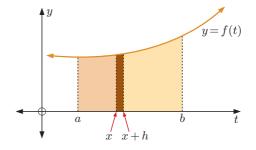
2 a 3 **b** -2 **c** $\frac{5}{2}$ **3 a** $\ln 7$ **b** $\frac{1}{6}$ **c** $\frac{7}{2}$

The following errata were made on 30/Jan/2017

page 69 Section 3D Explanation should read:

When a curve, or part of a curve, has shape:

we say that the curve is concave downwards


we say that the curve is concave upwards.

page 108 Section 4C Explanation should keep naming consistent:

Consider the narrow strip between t = x and t = x + h. The area of this strip is A(x + h) - A(x), but we also know it must lie between a lower and upper rectangle on the interval $x \le t \le x + h$ of width h.

area of lower rectangle
$$\leq A(x+h) - A(x) \leq$$
area of upper rectangle

If f(t) is increasing on this interval then

page 312 ANSWERS EXERCISE 3G Question 9 e ii, should read:

9 e ii Walk from P to R.

page 326 ANSWERS EXERCISE 8B.1 Question 4 b, should read:

4 a $a = \frac{3}{16}$ **b** $\frac{1}{8}$

page 327 ANSWERS EXERCISE 8B.2 Question 5 c, should read:

5 a If $k = \frac{1}{2}$, f(x) < 0 b $k = \frac{1}{3}$ c $\frac{11}{25}$

The following errata were made on 9/Jan/2017

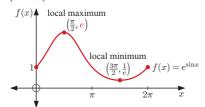
page 67 **EXERCISE 3B** Question **8**, should read:

8 Suppose $f(x) = \frac{x+k}{x^2+k}$ is never increasing. What range of values could the constant k have?

page 304 ANSWERS EXERCISE 2E Question 1 d, should read:

1 d
$$\frac{dy}{dx} = \frac{2x+1}{2\sqrt{x}(1-2x)^2}$$

page 307 ANSWERS EXERCISE 3B Question 8, should read:


8
$$-1 \le k \le 0$$

The following erratum was made on 6/Dec/2016

page 308 **ANSWERS EXERCISE 3C** Question **7 d**, should have correct coordinate label for local maximum:

7 d $\left(\frac{\pi}{2}, e\right)$ is a local maximum,

$$\left(\frac{3\pi}{2}, \frac{1}{e}\right)$$
 is a local minimum

